

# Blazars behind the Magellanic Clouds



Natalia Żywucka-Hejzner

In collaboration with

Michał Ostrowski, Arti Goyal, Łukasz Stawarz, Marek Jamrozy, Szymon Kozłowski, and Andrzej Udalski

Astronomical Observatory of Jagiellonian University 23.07.2017



### **Table of Contents**

#### 1. Introduction

- Blazars
- OGLE
- Motivation

#### 2. Identification

- Cross-matching
- Parameters

#### 3. Results

- Mid-IR sequence
- Polarization

#### 4. Conclusions

- Summary
- Further directions



Credit: ESO/S.Brunier

# Blazars



- Class of the AGNs
- Unification model: jets of blazars are close to line of observer's sight
- Broad range of electromagnetic radiation from radio to TeV-gamma rays emission
- Strong flat spectrum radio emission with:

 $S(v) \propto v^{\alpha}$  $\alpha > -0.5$ 

- Significant optical polarization
- Significant flux variability in whole range
- Non-thermal continuum

Blazars are generally divided into two groups:

**BL Lacertae (BL Lac)**  $\rightarrow$  no/weak emission lines

Flat Spectrum Radio Quasar (FSRQ)  $\rightarrow$  narrow and broad emission lines

Credit: The unification model of AGNs; Urry & Padovani 1995

# **OGLE** The Optical Gravitational Lensing Experiment

The OGLE project began in 1992 under the supervision of Andrzej Udalski.

The main scientific goals:

- the MCs and Galactic Bulge monitoring,
- dark matter study with microlensing phenomena,
- extrasolar planets searching,
- galactic structure study,
- analysis of different time scale variability of hundred millions regularly observed objects.

The observatory is located in Las Campanas, Atacama, Chile.



Credit: Prof. I. Soszyński

### **Magellanic Quasars Survey**

- All survey fields in the LMC and 70% of those in the SMC have been observed.
- The targets were selected from the third phase of the OGLE experiment based on their optical variability, mid-IR, and/or X-ray properties.
- Confirmation of 758 quasars (565 in the LMC and 193 in the SMC) behind both clouds
- 94% quasars from the MQS catalogue (527 in the LMC and 186 in the SMC) are newly identified objects





# **Identification of blazars**

- Blazars' identification was based on the MQS optical catalogue (Kozłowski et al. 2013) and a list of "featureless spectra" (FS) objects.
- ~ 10% of catalogued quasars should be radio loud quasars (Kellermann et al. 1989) → FSRQ type blazars.
- FS list  $\rightarrow$  BL Lac type blazars.
- Identification procedure was divided into two parts: cross-matching and parameters examination.

#### Radio surveys used in cross-matching:

- Sydney University Molonglo Sky Survey (SUMSS; Murphy et al. 2007) at 843 MHz
- Australia Telescope 20 GHz (AT20G; Murphy et al. 2010) at 5,8, and 10 GHz
- Parkes-MIT-NRAO (PMN; Condon et al. 1993) at 4.85 GHz
- Australia Telescope PMN follow-up (ATPMN; McConnell et al. 2012) at 4.8 and 8.6 GHz







#### Optical image: Bothun & Thompson (1988)

### **Parameters**

#### Spectral index $\alpha$ : $F_{\nu} \propto \nu^{-\alpha}$

To indicate if a radio spectrum of a source is flat  $\alpha_r < 0.5$  or steep  $\alpha_r > 0.5$ . The flat spectrum radio sources are identified with blazars.

The mid-IR spectral index:  $\alpha_{IR} > 0.5$  is expected.

| RA                          | DEC                                                                                                                                                                                                                                                                                                                                                               | R                                                     | Z                                                      | $\alpha_{r}$                                          | $\alpha_{\rm IR}$                                     |  |  |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|
| (2)                         | (3)                                                                                                                                                                                                                                                                                                                                                               | (4)                                                   | (5)                                                    | (6)                                                   | (7)                                                   |  |  |  |  |  |
| FSRQ blazar type candidates |                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                        |                                                       |                                                       |  |  |  |  |  |
| $00 \ 54 \ 44.70$           | -72 48 13.68                                                                                                                                                                                                                                                                                                                                                      | 1730                                                  | 0.505                                                  |                                                       | $1.89 {\pm} 0.50$                                     |  |  |  |  |  |
| $01 \ 14 \ 05.57$           | $-73\ 20\ 06.50$                                                                                                                                                                                                                                                                                                                                                  | 246                                                   | 0.937                                                  | $0.58{\pm}0.31$                                       | $1.33{\pm}0.13$                                       |  |  |  |  |  |
| $01 \ 20 \ 56.05$           | -73 34 53.51                                                                                                                                                                                                                                                                                                                                                      | 195                                                   | 1.565                                                  | $0.56 {\pm} 0.06$                                     | $1.88 {\pm} 0.07$                                     |  |  |  |  |  |
| $01 \ 22 \ 58.49$           | $-71 \ 52 \ 07.00$                                                                                                                                                                                                                                                                                                                                                | 267                                                   | 0.939                                                  |                                                       | $0.47{\pm}0.18$                                       |  |  |  |  |  |
| $04 \ 42 \ 45.19$           | $-68\ 18\ 38.99$                                                                                                                                                                                                                                                                                                                                                  | 371                                                   | 0.964                                                  | $-0.57 \pm 0.15$                                      | $1.20 {\pm} 0.09$                                     |  |  |  |  |  |
| $04 \ 45 \ 36.60$           | -68 59 46.10                                                                                                                                                                                                                                                                                                                                                      | 285                                                   | 1.714                                                  |                                                       | $1.73 {\pm} 0.02$                                     |  |  |  |  |  |
| $04 \ 46 \ 33.91$           | -67  58  55.88                                                                                                                                                                                                                                                                                                                                                    | 169                                                   | 1.301                                                  |                                                       | $1.72 {\pm} 0.15$                                     |  |  |  |  |  |
| 04  55  59.10               | -69 33 29.09                                                                                                                                                                                                                                                                                                                                                      | 336                                                   | 1.319                                                  | $0.47 {\pm} 0.04$                                     | $1.30 {\pm} 0.06$                                     |  |  |  |  |  |
| 04  59  54.27               | -67  56  35.59                                                                                                                                                                                                                                                                                                                                                    | 898                                                   | 1.687                                                  |                                                       | $1.45 {\pm} 0.14$                                     |  |  |  |  |  |
| 05  10  45.85               | $-69\ 41\ 26.48$                                                                                                                                                                                                                                                                                                                                                  | 165                                                   | 1.061                                                  | $0.72 {\pm} 0.01$                                     | $0.60{\pm}0.02$                                       |  |  |  |  |  |
| $05 \ 12 \ 21.49$           | $-71 \ 05 \ 55.61$                                                                                                                                                                                                                                                                                                                                                | 489                                                   | 0.286                                                  | $0.79 {\pm} 0.00$                                     | $1.71 {\pm} 0.03$                                     |  |  |  |  |  |
| $05\ 12\ 22.48$             | $-67 \ 32 \ 20.00$                                                                                                                                                                                                                                                                                                                                                | 557                                                   | 2.557                                                  | $0.08 {\pm} 0.04$                                     | $1.99{\pm}0.09$                                       |  |  |  |  |  |
|                             | $\begin{array}{c} {\rm RA} \\ (2) \\ \\ \hline \\ \hline \\ & \\ \hline \\ 00 \ 54 \ 44.70 \\ 01 \ 14 \ 05.57 \\ 01 \ 20 \ 56.05 \\ 01 \ 22 \ 58.49 \\ 04 \ 42 \ 45.19 \\ 04 \ 42 \ 45.19 \\ 04 \ 45 \ 36.60 \\ 04 \ 46 \ 33.91 \\ 04 \ 55 \ 59.10 \\ 04 \ 55 \ 59.10 \\ 04 \ 59 \ 54.27 \\ 05 \ 10 \ 45.85 \\ 05 \ 12 \ 21.49 \\ 05 \ 12 \ 22.48 \\ \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |  |  |  |

#### Radio-loudness **R**: $R = F_5/F_B$

Radio-loud sources:  $R \ge 10$ .

Radio flux extrapolation assuming the radio spectral index as  $\alpha_r = 0.5$ .

# Polarization

P<sub>o</sub> > 3% P<sub>1.4 GHz</sub> > 1%

The fractional linear polarization and angle of blazar candidates based on the AT20G catalogue and polarized flux density measured on 4.8 and 8.6 GHz radio maps of both MCs.

| Object           | Fractional linear Polarization |                  |                   |                    | Linear Polarization Angle |                    |                     |  |  |
|------------------|--------------------------------|------------------|-------------------|--------------------|---------------------------|--------------------|---------------------|--|--|
| -                | $4.8~\mathrm{GHz}$             | $5~\mathrm{GHz}$ | $8  \mathrm{GHz}$ | $8.6~\mathrm{GHz}$ | $20~\mathrm{GHz}$         | $4.8~\mathrm{GHz}$ | $8.6 \mathrm{~GHz}$ |  |  |
|                  | [%]                            | [%]              | [%]               | [%]                | [%]                       | [°]                | [°]                 |  |  |
| (1)              | (2)                            | (3)              | (4)               | (5)                | (6)                       | (7)                | (8)                 |  |  |
|                  |                                |                  |                   |                    |                           |                    |                     |  |  |
| $\mathbf{FSRQs}$ |                                |                  |                   |                    |                           |                    |                     |  |  |
| J0114-7320       | 9.5                            |                  |                   | 7.0                |                           | 70.7               | -12.9               |  |  |
| J0120-7334       | 5.0                            |                  |                   |                    |                           | -52.2              |                     |  |  |
| J0442-6818       |                                | 11.7             | 10.0              |                    | 8.1                       |                    |                     |  |  |
| J0512-6732       | 3.3                            | 12.7             | 10.7              |                    | 13.6                      | 13.6               |                     |  |  |
| J0551-6916       | 7.3                            |                  |                   |                    |                           | 8.3                |                     |  |  |
| J0551-6843       | 9.1                            |                  |                   |                    |                           | -3.9               |                     |  |  |
|                  |                                |                  | В                 | L Lacs             |                           |                    |                     |  |  |
| J0111-7302       | 4.1                            | 8.3              | 8.3               |                    | 9.7                       | 4.4                |                     |  |  |
| J0501-6653       | 10.7                           |                  |                   | 22.1               |                           | -2.8               | -11.1               |  |  |
| $J0518-6755^{a}$ | 12.6                           |                  |                   |                    |                           | -14.2              |                     |  |  |

### Mid-IR Strip Non-thermal emission



Credit: Massaro et al. 2011

## Conclusions

- Two lists of 44 objects: 27 FSRQs and 17 BL Lacs type blazars,
- most significant amount of the blazar candidates, 22 FSRQs and 17 BL Lacs, were found in the SUMSS catalogue,
- all objects are optically faint with the V band mag level between 18 and 22.
- all FSRQ blazar candidates are distant with redshifts up to ~3.3.



# **Further directions**

Optical variability study of both blazar candidates is based on data from OGLE-III and -IV projects, giving a temporal coverage of 13 years.

OGLE-III data consists of ~500 sampling points in I filter and ~50 in V filter observed within 8 years (2001-2009). OGLE-IV data consists of ~500 points in I filter I and ~100 in V filter observed between 2010 and 2013.





### **Further directions** Possible Fermi-LAT coincidences

